
1

Welcome to this 2nd year module on Instruction Architectures and
Compiler (IAC). This module is one that makes EIE different from EEE.
It provides you with both practical and theoretic knowledge in the
design of a modern processor architecture, and how to write a compiler
for it.
The emphasis of my part of the module (Autumn term) will be on the
instruction set architecture (ISA), how to design an entire processor
from scratch, and how to create a simulation model for the processor
and its associated memory.
Please note that I do not put my notes on BlackBoard because I
always make my notes open-source (i.e. anyone can access them with
or without an Imperial College account). Instead, I maintain a course
webpage shown in the slide here, and a Github repo where I put the
Lab stuff. These are updated week-by-week as we progress through
the term. Everything I cover: lecture notes, problem sheets, solutions,
sample exam paper, experiment instructions, design solutions and
useful resources are all included here:

http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
https://github.com/EIE2-IAC-Labs/

I strongly recommend that you BOOKMARK these two
links.

Lecture 1 Slide 1PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Lecture 1

Introduction to
Instruction Architectures &

Compiler

Prof Peter YK Cheung
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
E-mail: p.cheung@imperial.ac.uk

http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/
https://github.com/EIE2-IAC-Labs/
http://www.ee.ic.ac.uk/pcheung/teaching/EIE2-IAC/

2

By the end of the Autumn term, you will be able to:
• Use design essential digital hardware using SystemVerilog
• Design a multi-stage pipeline processor compliant to RISC-V ISA
• Use common software tools and languages such as Git/Github,

VSCode, Markdown, SystemVerilog, C++
• Use digital design tools such as Verilator, gtkWave to verify that your

design functioning correctly
• Use the CPU with memory to execute assembly and C programmes
• Write testbenches to verify correctness of digital hardwarwe

This module is very demanding on your time and commitment. You
also learn a lot as a result.

Lecture 1 Slide 2PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Intended learning outcomes

v Theory
§ How pipelined CPUs with caches process instructions (Autumn)

§ How a compiler turns code into instructions (Autumn)

§ The hardware-software interface between compiler and CPUs (A+S)

v Practise
§ Creating a CPU in System Verilog (Autumn)

§ Creating a compiler in C++ (Spring)

v Skills
§ Improved knowledge of RTL languages and tools (Autumn)

§ Increased proficiency in C++ and software (Spring)

Here are the staff and GTA/UTAs involved in this module. UTAs and GTA will
be helping with the Lab sessions. Peter Cheung will be delivering all the
lectures in the Autumn term. John Wickerson is responsible for the Compilers
part of the module in the Spring term. Aaron Chao, a newly joined lecturer,
will be assisting both of us in both terms.

3

Lecture 1 Slide 3PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Course Instructors & TAs

Peter Cheung
(Autumn)

John Wickerson
(Spring)

Ryan Voecks
(UTA –EIE3)

Petr Olsan
(UTA –EIE3)

Guanxi Lu
(UTA –EIE3)

William Huynh
(UTA –EIE3)

Hrishikesh Venkatesh
(UTA –EIE3)

Adam Ali
(UTA –EIE3)

Haocheng Fan
(UTA –EIE3)

Tianqi Hu
(UTA –EIE3)

All lectures and lab sessions for the Autumn term part of the module will be
in person. There will NOT be live streaming but all sessions will be recorded.
The recordings will be uploaded and made available a fews days after the
sessions happen.

The class is divided into Group A and Group B. Each group is scheduled for a
two-hours lab session each week (except mid-term week):
• Group A – Friday 10.00 – 12.00 in Room 305
• Group B – Thursday 9.00 – 11.00 in Room 305

You are to work in pairs. Each student must find a lab partner in your group
and notify me via the link to a MS survey form no later than Monday 17
October.

4

Lecture 1 Slide 4PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Learning approach for Instruction
Architecture (Autumn Term)

v Lectures: ~ 2 hours per week (Tuesday 4pm – 6pm)
§ In person, cover theoretical stuff + introduction to Lab/Project

v Reading: ~ 2-3 hours per week (untimetabled)
§ Sections to read given in lecture

v Supervised Lab (2 - 4 hours Thursday and/or Friday)
§ Pair-based learning with Lab instructions in first half of term

§ Team-based project to design RISC-V processor in 2nd half of term

§ Team working in groups of 4, but individually assessed

§ Lab Sessions also serve as Tutorial Sessions – you can ask staff or
UTA questions about course materials

§ Complete your partner declaration survey here:

https://forms.office.com/e/TtBK3asFr4

https://forms.office.com/e/TtBK3asFr4

The first book here is the recommended textbook. My course will be
substantively based on this book and I will also be using some of the slides
provided by the authors.
You can get free access to the digital version of this book via Imperial College
library repository here:
https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=899
4656&isbn=9780128200650

Of course, this is only available to Imperial College students with an Imperial
account.

The second textbook is both famous and popular, but less useful for my
module because it has less of the hardware elements that are included in my
syllabus. You can also get this via the link:

https://library-
search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma99100061317240
1591

5

Lecture 1 Slide 5PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Autumn : Course Textbook

v Computer Organization and Design RISC-V Edition, Patterson and
Hennessy (~£77), electronic copy available at:

https://library-
search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591

v Digital Design and Computer Architecture (RISC-V Edition)
by Sarah Harris and David Harris.

https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=89
94656&isbn=9780128200650

https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=8994656&isbn=9780128200650
https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=8994656&isbn=9780128200650
https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://library-search.imperial.ac.uk/permalink/44IMP_INST/mek6kh/alma991000613172401591
https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=8994656&isbn=9780128200650
https://www.vlebooks.com/product/openreader?id=IMPERIALBB&accId=8994656&isbn=9780128200650

For this year, the module remains as 7.5 ECTS. We are currently asking the
Department to increase this to two separate 5 ECTS modules.

The assessment will consists of a short mid-term quiz on the Lab experiments
you conduct in the first half of Autumn term, a team project to be completed
by the end of the term, and a final Summer term written examination.

These modes of assessments is mirrored in the Spring term part of the
module.

6

Lecture 1 Slide 6PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Assessment – Entire module (10 ECTS)

v The course uses three modes of assessment:

v Labs (20% or 2 ECTS):
§ Autumn (5%): Mid-term quiz on Lab experiments

§ Spring (5%): Tools for building compilers

v Coursework (40% or 4 ECTS):
§ Autumn (25%): building a working RISC-V processor

§ Spring (25%): building a working C compiler

v Final exam (40% or 4 ECTS):
§ Assessed knowledge of CPUs and compilers

§ Questions cover both topics of architecture and compiler

7

Lecture 1 Slide 7PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Labs and coursework for Autumn Term

v First half :
§ 4 Lab Sessions to teach digital design with SystemVerilog

§ Work in pairs – you choose your own lab partner

§ Expect to keep a logbook on git

v Mid-term : assessment of lab (5%)
§ Online quiz on Lab 0 to Lab 3 – multiple choice + evidence on git

v Second half : assessment on project (25%)
§ Work in teams of 4 from two pairs (I choose)

§ Design a working RISC-V processor in SystemVerilog

§ Four tasks already partitioned – you allocate responsibilities

§ Assessed both as a team and individually (details later)

Part of the learning outcome of this module is to teach designing digital
hardware using a hardware description language (HDL). In our case, the HDL
is SystemVerilog.

You have been introduced to digital design in Year 1. Here is a recap.

8

Lecture 1 Slide 8PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Overview on

Digital Hardware Design

In the first year, you learned about the different ways of describing or specifying a
digital circuit.

1. Schematic diagrams with gates – this method is the first thing you learned and it
is easy to understand. However, as will be seen in Lecture 3, this is not necessarily
the best way to specify a large digital system.

2. Boolean equations – this provides a formal way to express logical relationships
between Boolean variables. Useful when designing on paper, but less useful in
practice. In particular, we rarely use Boolean algebra to perform logic simplification
in real-life!

3. Truth Tables – this is a universal way to describe the behaviour of a circuit and we
continue to use this in datasheets or even in actual designs.

4. Timing diagrams – this is a useful way to explain behaviour of sequential circuits
and is used in datasheets. However, not that useful as a method to specify a circuit
in a CAD system.

5. Hardware Description Languages (HDLs) – you have already done a bit of this last
year. HDL is the way that most digital designs are specified nowadays. For this
course, we will be using SystemVerilog (SV) HDL, which is one that is very closed to
the C language. It is also used extensively for designing integrated circuits such as
ASICs and other type of chips. It is also popular in North America and in Asia.

Another popular HDL is VHDL. I personally find VHDL too wordy (verbose). Finally,
there are now emerging higher level languages such as OpenCL, which is an attemp
to make hardware design more like programming a computer. This topic is left to
later years.

9

Lecture 1 Slide 9PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

How to describe/specify digital circuits?

Schematic diagram
& gates

Truth table

Boolean equation

Hardware Description Language
(HDL)

Timing Diagram

You have also learned about the various building blocks for digital electronics.
1. Primitive gates – We have the basic AND, OR, NAND, NOR, XOR and XNOR gates.
2. Multiplexers MUXs – These are really useful component. Shown here is a 2-to-1 MUX
with two data inputs and one select input. The output is one or the other depending on
the select input (sel). We often put a number of these together to provide multiplexing
function to a multi-bit data word (as shown here with two 3-bit numbers).
3. Arithmetic circuits – Commonly found are adders and multipliers. Subtractor can be
built from an adder if we use 2’s complement representation of signed integers.
4. Encoders/Decoders – These two are related. Encoding is a logic module that reduces
(encodes) a large number of bits and produces fewer output bits. Decoders are the
opposite. Shown here is a 7-segment display decoder, where 4 input bits are decoded into
7 logic signals to drive the seven segments of the display. The encoder here is known as a
priority encoder. It produces a 3-bit output showing where the first ‘1’ is encounters from
the most-significant bit D7 to the least significant bit D0.
5. Flipflops and Registers – These are the building blocks for all sequential circuits. As will
be seen later, we really only use one type of flipflop – the D-FF.
These are all important components that all digital circuit designers need to be familiar
with. However, nowadays, we rarely design large digital systems at such low levels.
Instead we generally try to express these building blocks in a more abstract manner in a
hardware description language (as we will see in later lectures).
In addition to these basic blocks, we also have memory devices and processor blocks.
These are topics that we will cover towards the end of this module.

10

Lecture 1 Slide 10PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Basic digital building blocks

Primitive Logic Gates Multiplexers Arithmetic circuits

Decoders

Flipflops and Registers

Encoders

All digital circuits exhibit propagation delays. Here it shows the delay table
for a “discrete logic” CMOS NAND gate. The delay could be in the region of
nanoseconds. However, with the FPGA chips we use for this module, the
internal “gate” propagation delay are in tens of picoseconds, which is much
faster than discrete logic. As can be seen later, the “gates” inside the FPGA
are also much more complex than a simple NAND gate. In fact, they are not
gates at all!

Also note that propagation delay depends on the “cause” (input rising or
falling, and on the gradient of the edges) and the “effect” (output rising or
falling). Delay also depends on what are connected to the output (i.e. the
loading). As can be seen in the example here, the rising edge A to falling
edge X delay is lower than that of A falling to X rising.

Note that I use an arrow to indicate the cause (the blunt end) and the effect
(the pointed end) in a timing diagram.

11

Lecture 1 Slide 11PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Cause & Effect

Propagation Delay:
The time delay between a cause (an input changing) and its effect (an output
changing), assuming output load capacitance of 30pF.

All digital systems can be generalized into two types of circuits:
combinational and sequential.

Combinational circuits do not have states. All outputs are immediately
produced depending only on instantenous inputs.

Sequential circuits consist of combinational circuits AND STORAGE (such as
flip-flops or memory elements). Memory elements store the “state” of the
circuit.

All sequential circuits we use in this module are SYNCHRONOUS. That is, the
state of the circuits changes only on the active edge of a clock signal. The
active edge can be rising (positive) or falling (negative) edge of the clock
signal.

In general, a digital system can have more than one clock signal (we call this a
clock domain). However, for this module, we restrict ourselves to only a
single clock domain.

12

Lecture 1 Slide 12PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Combinatorial and sequential logic

You learned about various types of flipflops (FFs) in the first year. In fact, all
you need is the D-FF. With a D-FF, you can construct circuits to behave like
various types of flipflops: Toggle (T-FF), set-reset (SR-FF) or a JK-FF.

Therefore in this course, we will ONLY use D-FF for everything. This is in fact
what happens in practical designs.

We use the IEEE standards for the symbol here. C mean clock input, the
number 1 is a numerical label (as clock 1). D is for data input, and 1D means
this input is controlled by input 1. Q is the flipflop output.

13

Lecture 1 Slide 13PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

D-Flipflop (1)

Timing and delay parameters for flipflop is different from that with gates.
Shown here is a D-FF that responses to a rising edge on the clock signal. A D-
FF is like a camera, taking a “picture” from the scene (input is D). The clock
input C1 is like the trigger on the camera – when pressed it samples the input
and take a picture. The “cause” here is the rising edge of the CLOCK and the
“effect” is the Q output sampling the D input, and keep the value until the
next rising edge of the clock.

The delay here is from CLOCK rising edge to Q output changing. However, for
the D-FF to work properly, there are two other timing parameters which are
important: the setup time and the hold time. I will be talking about these in
a later lecture.

14

Lecture 1 Slide 14PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

D-Flipflop (2)

1

15

Registers (D-FFs) are used everywhere in digital circuits. Using registers has the
advantage of: 1) synchronising all activities to a clock signal; 2) isolate different part
of the digital systems between registers (because the registers block the signal until
the next active edge of the clock; 3) makes timing consideration much easier to
handle.
In the circuit shown here, the D-flipflop is triggered on the rising edge of the clock.
The value in DATA is sampled and stored, and keep as output Q. However, for
reliable operations, DATA MUST BE STABLE some time before the rising edge of
CLOCK. This time is known as setup time tS. This time is needed because there is
internal propagation of the DATA signal which must be taken into account. As a
result, for the D-flipflop to work, such internal delay is specified as the flipflop setup
time requirement.
Similarly, DATA MUST BE STABLE and holds its value some time after the rising edge
of CLOCK. This time is known as hold time tH.
What happens if data changes within the setup/hold time window? The Q output
becomes unknown (could be ‘1’ or ‘0’, or at a voltage level that is between the two).
Eventually Q will go to ‘0’ or ‘1’, but the time it takes to reach the stable Q value is
random! Such a state of the flipflop is known as a “metastable” state.
In this module, we are only concerned with a high-level FUNCTIONAL view of digital
circuit. That is, we assume that the digital circuit is control with a clock where NO
timing violation ever occurs. We therefore will not worry about setup and hold
time in our module. All digital signals and outputs change on each clock cycle.

Lecture 1 Slide 15PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Setup and Hold Times

Setup Time: DATA must reach its new value at least tS before the CLOCK­ edge.

Hold Time: DATA must be held constant for at least tH after the CLOCK­ edge.

• Typical values for a register: tS = 5 ns, tH =3 ns (discrete logic/ I/O circuit)
tS = -50ps, tH = 0.2 ns (internal LE)

• The setup and hold times define a window around each CLOCK ­ edge within which
the DATA must not change.

• If these requirements are not met, the Q output may oscillate for many nanoseconds
before settling to a stable value.

The DATA input to a flipflop or register must not change at the same
time as the CLOCK.

You will also be design circuits that have hierarchy. Shown here is a simple
CPU with a register file as a component. Expanding this Register file may
show that it is made up of numerous registers, multiplexers and
demultiplexers.

You must design your circuits so that components can be reused as much as
possible. For example, a good multiplexer design should be usable for
different number of data bits.

16

Lecture 1 Slide 16PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Design Hierarchy

One of the most important theme of this module is Instruction Set
Architecture. Here is some of the basic terminology and concepts that you
need to know.

17

Lecture 1 Slide 17PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Overview on

Instruction Set Architecture (ISA)

Computer architecture is a field of study among electronic engineers and
computer scientists for decades. However, in the past 30 years, this field has
progressed so much that the current performance of the latest processor is
beyond what we expect just a decade earlier.

The reason for this rapid progress is due to the eight great ideas introduced
by computer architects.

18

Lecture 1 Slide 18PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Eight Great Ideas in Computer Architecture

1. Design for Moore’s Law
2. Use Abstraction to Simplify Design
3. Make the Common Case Fast (RISC philosophy)
4. Performance via Parallelism
5. Performance via Pipelining
6. Performance via Prediction
7. Hierachy of Memories
8. Dependability via Redundancy

This slides shows a high level view of a computer system, from the highest
abstraction level to the lowest abstraction level.
At the top are application programmes written in a high-level language such
as C++ or Python. Such programmes needs tools such as compiler, editor,
assembler, linker etc. The computer system must also run an operating
system, which shield the user from the detail hardware structure. For
example, OS provides easy means for the user to input data, communicate
with other computers via network services etc.
At the lowest level, we have the integrated circuit as transistors and
interconnects. These are implementations of circuits designed by engineers
such as yourselves. The design is based on processor architecture – the topic
of this module. The I/O system allows interfacing between the processor and
the external world with standard protocols such as UART, USB, SPI etc.
Right in the centre that links together the abstract level at the top and the
physical and logical level at the bottom is the Instruction Set Architecure
(ISA). The ISA provides an anchor to everything in a computer system.

19

Lecture 1 Slide 19PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

What is “Computer Architecture” ?

INSTRUCTION SET ARCHITECTURE

Operating
System

Processor Architecture I/O System

Digital Design

VLSI Circuit Design

Application

Compiler

Le
ve

ls
 o

f
Ab

st
ra

ct
io

n

low

high

! Key: Instruction Set Architecture (ISA)
! Different levels of abstraction

Programs for a computer can be in various level of representations. The
highest is of course the high-level language such as C or C++. This must be
translated to assembly language using the ISA using a compiler. The output
of the compiler are assembly language instructions that must than be further
mapped to machine code program (binary).

The machine code instructions are what the CPU use to run your program.
These are decoded into different control signals which govern the internal
working of the processor.

20

Lecture 1 Slide 20PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Levels of representation in computers

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine
Interpretation

temp := v[k];
v[k] := v[k+1];
v[k+1] := temp;

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

You should be very familiar with this by now. Here a slides that show the
compilation process, generating an executable file which you run with inputs
and outputs.

This module will teach you both the design and implementation of a working
processor based on the RISC-V ISA, and how to create your own compiler. By
the end of the Spring term, you should have your own compiler that compiles
C program to run on your RISC-V process design.

21

Lecture 1 Slide 21PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Compile-time and Run-time

At the centre of a computer architecture is its ISA. Currently the three most
popular ISA are: Intel’s X86 and its variants, ARM’s processor ISA, and finally
the RISC-V ISA.

Only the RISC-V ISA is open source. This is partly why it is chosen for this
module.

The ISA includes all the definitions listed above in the slides. You should know
each of these charactersitics of the RISC-V ISA by the end of the term.
Otherwise your processor will not conform to the RISC-V standard, and will
no be able to run the executable files compiled using RISC-V compilers.

22

Lecture 1 Slide 22PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

What is “Instruction Set Architecture (ISA)”?

! “. . . the attributes of a [computing] system as seen by the programmer, i.e.
the conceptual structure and functional behavior, as distinct from the
organization of the data flows and controls the logic design, and the
physical implementation.”

" Amdahl, Blaaw, and Brooks, 1964

ISA includes:-
! Organization of Programmable Storage
! Data Types & Data Structures: Encodings & Representations
! Instruction Formats
! Instruction (or Operation Code) Set
! Modes of Addressing and Accessing Data Items and Instructions
! Exceptional Conditions

23

Lecture 1 Slide 23PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Instruction Set Architecture (ISA)

! A very important abstraction
• interface between hardware and low-level software
• standardizes instructions, machine language bit patterns, etc.

• advantage: different implementations of the same architecture

• disadvantage: sometimes prevents using new innovations

! Modern instruction set architectures:
• ARM, Intel x86, RISC-V, Xtensa LX6/LX7 (used in ESP32)

Before we dive into the RISC-V ISA, let us examine the progress of integrated
circuit technology. This a graph showing Moore’s law in action. The trend is
a straight line with the number of transistors plot in log scale and the years
plotted in linear scale. This is the result of technology scaling (i.e. transistors
getting smaller in dimension) and die size (i.e. area of a chip) getting larger
while the manufacturing yield is maintained.

24

Lecture 1 Slide 24PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Technology: Logic Density (processors)

However, it is clear from this slide that while transistor per chip keeps
increasing, the clock speed and the power dissipation per chip is leveling off
or even dropping. The performance improvement in a computer system is
now sustained not by technology shrinkage, but by having many threads on
many cores.

In this module, we only concern ourselves with a single CPU core. This lay
the foundation for later years elective modules on many-core designs.

25

Lecture 1 Slide 25PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Processor Speed Improvements

A typical computer system consists of the CPU, memory storage, input units
and output units. There are two types of digital signals involved: data signals
on the datapath, and the control signals.

26

Lecture 1 Slide 26PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

A Typical Computer System with I/O

The RISC-V architecture has thse characteristics: It uses regular structure with 32 (or
64) internal registers, with 32 (or 64) bit instructions. (We only use 32 register, 32-
bit version of RISC-V in this module).
The design philosophy of RISC-V is that only the most common instructions are used.
This is true to the name of Reduced Instruction Set Computer (or RISC).
Since there are fewer instructions, a designer (such as yourself) can optimize the
internal hardware to run these instructions faster.
RISC-V is not a single ISA. The specification includes multiple variants and extensions.

27

Lecture 1 Slide 27PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

RISC-V Characteristics

! Emphasis on simplicity and regularity
• 32-bit instructions

! Smaller is faster
• Small register file and fewer instructions

! Optimise for common cases

• e.g. include support for constants
! One ISA family with different variants

• Integer only, floating point, 32-bit/64-bit etc.

! Open-source (up to a certain extend)

You will be designing in a Team of 4 students your own version of RISC-V
processor RV32-IM (32-bit integer with multiply-divide).

Shown here is the RISC-V CPU in a microcontroller by Espressif called ESP-C3,
which is used in a module by AI Thinker, the ESP-32-12F-kit.

This module is used in a PCB board (called Vbuddy) designed by me to
support the laboratory session of this course. More about this next week
when you will start the in-person lab sessions.

28

Lecture 1 Slide 28PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

ESP32-C3 Microcontroller – Chip, module, board

This module requires you to learn many transferable skills and become
familiar with software tools that are applicable elsewhere. To prepare you
for the in-person lab session next week, you have completde in your own
time (and at your own pace) Lab 0. The purpose is to install the software
tools required for lab coursework and project this term.

Go to the link shown here and follow the instructions to install the software
required.

https://github.com/EIE2-IAC-Labs/Lab0-devtools.git

A group of students from last year (Clemen Kok, Aranya Gupta, Frishikesh
Venkatesh and Daniel Coroama) created a github repo to supplement my
teaching materials. This repo contains useful links to additional reference on
tools and skills useful not only to this module, but to the entire EIE program
as a whole. Check this out here:
https://github.com/clemenkok/IAC0

29

Lecture 1 Slide 29PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Lab 0 – Setting up the Development Environment

! Follow instructions at the following Github page:
https://github.com/EIE2-IAC-Labs/Lab0-devtools.git

! You need to install and learn to use the following tools:
• VS Code – the Integrated Development Environment (IDE)
• Verilator – compile SystemVerilog HDL into C++
• RISC-V GNU toolchain – open-source tools for RISC-V including compiler,

assembler, simulator etc.
• gtkWave – view waveforms generator by Verilator model for debugging
• Git and Github – to record your work and your design (for assessment)

! Optional but useful to learn and install:
• Linux commands – only basic ones
• Markdown language (MD) – used with Git, Github
• Obsidian – Cross-platform open-source note taking tool
• Make utilities – used to compile and manage software build
• Bash – basic scripting language all EIE students should know

https://github.com/EIE2-IAC-Labs/Lab0-devtools.git
https://github.com/clemenkok/IAC0
https://github.com/EIE2-IAC-Labs/Lab0-devtools.git

In addition to all the software tools that you need to learn to complete this
module (such as VS code, Verilator, GTKwave, Git etc., you will also learn
many other skills highly relevant to becoming a good Computer Engineer.
One of the skills is to be able to use commands in a terminal window.

Here is a table containing 8 most useful Linux command that you need to
learn. There is a 9th one: ”chmod”. I left this out for now, but you will
encounter this later.

30

Lecture 1 Slide 30PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

8 most useful Linux Commands

For this module, Git is being used extensively for me to disseminate lab
instructions, for you to post your logbook and results, and finally for your
team to collaborate on the project.

Git uses a simple language called “Markdown” or MD. This is a much
simplified version of HTML and provide ways of formatting text easily.

Here are the few most important Markdown syntax that you should know.
There are extensions to this list, but you can do most things with just these
few Markdown “commands”

31

Lecture 1 Slide 31PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Basic Markdown Syntax

For this module, Git is being used extensively for me to disseminate lab
instructions, for you to post your logbook and results, and finally for your
team to collaborate on the project.

Git uses a simple language called “Markdown” or MD. This is a much
simplified version of HTML and provide ways of formatting text easily.

Here are the few most important Markdown syntax that you should know.
There are extensions to this list, but you can do most things with just these
few Markdown “commands”

32

Lecture 1 Slide 32PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Basic Markdown Syntax

Obsidian is a free-to-use note taking app that uses Markdown as its language.
Many people have started using this multi-platform freeware (personal use
only) for taking notes and building their own repository of information on
different topics.

I strongly recommend you watch this YouTube video to find out why
Obsidian is fast becoming the most popular note taking app:
https://www.youtube.com/watch?v=DbsAQSIKQXk

 Here is my Obsidian notes on the basic syntax for Markdown and the
resulting formatted page. You can toggle between the two by clicking the
icon at the red circle.

33

Lecture 1 Slide 33PYKC 8 Oct 2024 EIE2 Instruction Architectures & Compilers

Obsidian – Best note taking app?

https://www.youtube.com/watch?v=DbsAQSIKQXk

